Architecture Analysis with
AADL

_ The Speed Regulation Case-

Study

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Julien Delange

=== Software Engineering Institute | Carnegie Mellon University ©2014 Carnegie Mellon University

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 2014 2. REPORT TYPE 00-00-2014 to 00-00-2014
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Architecture Analysiswith AADL The Speed Regulation Case-Study £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon University,Softwar e Engineering REPORT NUMBER
Institute,Pittsburgh,PA,15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 56
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0001524

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

What this talk is about?

1. Actual issues for Safety-Critical systems design

2. Why Model-Based Engineering techniques are helpful

3. How AADL can detect issues early and avoid potential rework

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

Agenda

Introduction on Model-Based Engineering
Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

Agenda

Introduction on Model-Based Engineering

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

Polling Question 1

Do you know what Model-Based Engineering is?

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

Safety-Critical Systems are Intensively Software-Reliant

Operational & Support

Software

25,000 [~ | 24000
|
|
|
20,000 1— |
|
o |
= |

g
£ 15,000 [~ I
= Operational Software I
= A '
o |
9 10,000 —/ I
v ’ |
|
|
|
5000 I |
|
|
135 236 |
0 F-16 ABlock 1 F-16D Block 60 F-22 Raptor F-35 Lightning Il F-35 Lightning 11
(1974) (1984) (1997) (2006) (2012)

Source: “Delivering Military Software Affordably” in Defense AT&L

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

Errors are introduced early but detected (too) lately

High Fault Leakage Drives Major Increase in Rework Cost

Aircraft industry has reached limits of affordability o,
due to exponential growth in SW size and complexity. (20.5% 300'100

- m -'.._ -
70% Requirements &

80% late error
sysl‘em teracti erro
in on = discovery at high
. .

.. rework cost
Test
- (70%,3.5% 1x
Softwara -~
Architectural - - - tegratit
pesign | Major cost savings through rework avoidance R
by early discovery and correction
xA $10K architecture phase correction saves $3M
: 20%, 16% -
s 5')(Unit Where faults are introduced
Rework and certification is 70% of SW Where faults are found
cost, and SW is 70% of system cost. The estimated nominal cost for fault removal
Sources: k " . . .
NIST Planning report 02-3, The Economic Impacts of Inadeguate .-". ."‘. CDS“V certification process leads to hlgh
Infrastructure for Software Testing, May 2002. PRl percentage of operational work around.
D. Galin, Software Guality Assurance: From Theory fo
Implementafion, Pearson/Addison-Wesley (2004} Code
B.W. Boehm, Scftware Enginesring Economics, Prentice Hall (1981) Development

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

. . _ . . . Speed Regulation Case-Study
=—— Software Engineering Institute ‘ Carnegie Mellon University =~ Julien Delange 9

© 2014 Carnegie Mellon University

Why Model-Based Engineering Matters?

Capture system architecture with designers requirements
Focus on system structure/organization (e.g. shared components)
Tailor architecture to specific engineering domain (e.g. safety)
Validate the architecture
Check requirements enforcement (e.g. no global variable)
Detect Potential issues (e.g. interfaces consistency)
Early Analysis
Avoid late re-engineering efforts (e.g. less rework after integration)
Support decisions between different architecture variations

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange 10

© 2014 Carnegie Mellon University

Polling Question 2

Do you already know AADL?

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

11

Architecture Analysis Design Language

SAE Standard for Model-Based Engineering
First version in 2003, actual version 2.1
Definition of System and Software Architecture
Specialized components with interfaces (not just “blocks”)
Interaction with the Execution Environment (processor, buses)
Extension mechanisms

User-Defined Properties (integrate your own constraints)
Annexes (existing for safety, behavior, etc.)

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

12

AADL Model Example

Process

|
produce” CONSWMEer e xam Insta
producer pr:, ‘
CcCoOnsumer prs
. I
dat aout th I "
S AN B S
; ; e Ji'
L dataourt J , [i _
; - ; Processor
producegr_ram [consumer ram i
| i
rodicer cpu CONSUmMer cp Bus
eth
th S
-

I\/Ie%ory

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

13

Architecture Analysis Design Language
Security

Safety & Reliability
MTBE sIntrusion
i \ sIntegrit
EMEA \ , / ntegrity
/ *Confidentiality
*Hazard

analysis
Auto-generated
analytical models

: \ 1/ Resource
Data Quality \ Consumption
sData precision/ *Bandwidth
accuracy CPU ti

. o ime

“Temporal Real-time Performance Sower
correctness *Execution time/ consumption

«Confidence Deadline

Deadlock/starvation

sLatency

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University ~Julien Delange 14

© 2014 Carnegie Mellon University

Agenda

Presentation of the Case Study

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

15

Objectives of this Study

Learn Architecture Modelling with AADL and the OSATE workbench
Model a family of systems with their variability factors

Analyze the Architecture from a performance perspective

Discover Safety Issues using Architecture Models

Support Architecture Alternatives Selection

lllustrate the Process with a relevant case study

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange

© 2014 Carnegie Mellon University

16

Case-Study Description

Self-Driving car speed regulation

Obstacle detection with user warning
Camera detection
Infra-red sensor

Automatic Speed and Brake
Two speed (wheel, laser) sensors
Redundant GPS

=== Software Engineering Institute | Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

17

Polling Question 3

On what aspect would you like to focus?

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

18

Case-Study Objectives

Help designers to choose the best Architecture
Best reliability, avoid potential failure/error
Meet timing and performance requirements
Analyze Architecture according to stakeholders criteria
Try to analyze what really matters
Quantify architecture quality from different perspectives
Latency
Resources and Budgets
Safety/Reliability

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange

© 2014 Carnegie Mellon University

19

Agenda

System Overview

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

20

Functional Architecture

r —
Chstable Image /
Camera 1| ‘_jl. Acquisition
Ob=tacle m Emergsncy Warmning Warming
I Detection ﬁ . Detection Activation Crendice
Ewaluation
Dhstable Radar
Radar — 1‘ Acguisition /
Speed Wheel I Speed I ?
Sensor "rﬂ\'_jl- Threshaold I
Speed | Computatiocn
Estirmate
[—
Speed Laser
Sensor
%I Brake
1 Speed
Controller

%l Acceleration

Compute

Actuators
GPS devices Control

-
|
1

o
|
|
|

Speed Regulation Case-Study
Software Engineering Institute ‘ Carnegie Mellon University =~ Julien Delange 21

© 2014 Carnegie Mellon University

Functional Architecture, timing perspective

Dbstable) g.‘?
P, Acquisition
Obstacl
{=0ms) Ohstacle I:-ist,a:?cz Emergency Warning Warming
Detection S e Detection Activation Device
Radar [100wms] {dms) (2ms) [S00ms)
ol Acguisition [1bms}
Radar [10ms] j\.
Speed
Speed Wheel]
EamEor P Threshald
Speed 1 Cosmputakion
Estimate 14 ms)
(& ms)
Speed Laser
Sensor
speed Brake [2mis]
[Caontroller
{5 ms) Acrceleration
GPS1 2ms)
Paositicn —"Tk
Weober [12 mis)
GF52

— e o e = =)

Max end-to-end latency = 900 ms

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

=== Software Engineering Institute | Carnegie Mellon University

Functional Architecture, criticality perspective

I |
I I l i o
Activation Crenvice
I |
I————I - High Critical
I I Speed
A9 Threshold
I I Computation I:I Low Critical
I |
o | — o]
| GPS1 I _
| I e
Voter
| GP52
L —_— —_— —_— I

Redundancy Groups (performs the same function)

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University =~ Julien Delange

© 2014 Carnegie Mellon University

Deployment Alternatives

Alternative 1: reduce cost and complexity
Two processors and one shared bus

Potential interactions for functions collocated on the same
processor

Alternative 2: reduce potential fault impact
Increase potential production cost (more hardware)
Three processors inter-connected with two buses

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University ~Julien Delange 24

© 2014 Carnegie Mellon University

Architecture Alternative 1 Reduce Cost and Complexity

Potential interactions for functions collocated
on the same processor

Bandwidth: 500 kbps
Acquisition time: 10 to 30ms
Transmission time: 1 to 10 us per byte

— 50 MIPS

. . Speed Regulation Case-Study
Carnegie Mellon University Julien Delange 25

© 2014 Carnegie Mellon University

Architecture Alternative 2 Reduce Fault Impact

Might increase production costs

Bandwidth: 5 kBps
Acquisition time: 50 to 100ms
Transmission time: 10 to 50 us per byte

GP51
Position
Woter
GP52

50 MIPS

50MIPS

ECLIZ

50MIPS
Speed Regulation Case-Study

=== Software Engineering Institute | Carnegic Mellon University ~ Julien belange 2

© 2014 Carnegie Mellon University

Agenda

AADL model description

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

27

Modeling Guidelines

Separate architecture aspects in different files

Leverage AADL extension and refinement mechanisms
Capture common characteristics, avoid copy/paste
Extend generic components

Use properties to quantify quality attributes
Processed by tools to evaluate architecture quality
Specify once, use by several analysis tools
Ensure Analyses Consistency

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange

© 2014 Carnegie Mellon University

28

Model Organization — devices

Generic components

speed_sensor || aaaaaa I || warning_device I op=
#

speed laser_sensor speed_wheel_sensor

#
#
gpsE.impl

L1
aps.implE

Extension and refinements |

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

29

Model Organization — devices — textual model

device [[zdar] I Component Name I

features

distance_estimate : owut data port speed_regulaticn::icd::distance;
flows
f@ : flow source di

PO A Timing constraints
(Iatency analysis) I Error propagations and flows I

annex EMW2 [*¥*
use types speed_reg

error propagations |
distance_estimate : out propagatiohl{HoValue,InualidValue};l ‘

Types of faults

(all safety analysis tools)

flows
ef@ : error source distance_estimate{NovValue,Invalidvalue};
end propagations;

PropaLbics
emvZ:iseverity =» ARP476l::Major applies to distance_estimate.novaluej;
emv2::likelihood => ARP4761::Prcbable applies to distance_estimate.novaluej;
emv2: thazards =>
([crossreference =»> “"N/A"j;
failure => "NovValue"j;
phases => ("all");

description =»> "Moo informaticn from the Radar™;
comment =» "Error if both the camera and the radar does not send any walue”;j
1
applies to distance_estimate.novalue; Documentlng the faults
emv2:rseverity =» ARP476L1::Mincr applies to distance_estimate.invalidwvalue;
emv2::likelihood => ARP4761::Probable applies to distance_estimate.invalidvaluej; (safety anEﬂyS|S)

emv2:thazards =>
([crossreference => "N/A";
failure => "Invalidvalue"j;
phases =» ("all");
description =* "Invalid distance sent by the radar”;
comment =¥ "First cccurrences of inwvalid data Should be handled by the distance estimator.”;

1D

applies to distance_estimate.invalidvalue;
—

Y .

nd
— Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange 30

© 2014 Carnegie Mellon University

Model Organization — Interfaces Specifications

Data types being used to
communicate across functions

Data size properties
(resource allocation and latency analysis)

data gp;. position

data) ta_re e;enfaflcn =¥ Eenum;

=" One property, several analyses ccatoce -> ("brake”, "accel")s
d

pr

=@ Ensure Analyses Consistency

feced command
T speed_command;

data implementation speed_command.i

subcomponents
data boolean kind : data speed_command_type;
properties value @ data base_types::unsigned_16;

ldata size =»> 1 bits; end speed_command.i;
end boolean;

data distance extends base types::unsigned 32

end distance;

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University =~ Julien Delange a1

© 2014 Carnegie Mellon University

Model Organization — platform

I
ecu_rs2ll_one_connector ecu_rs232_ two_cy

Generic Processor Component
(common for all the architecture)

processor ecu
properties

\;\ <
-\

SEI: :MIPSCapacity =»> 5S@8.8 MIPS;
end ecuj;

rai
ecu_can_one_connector ecu_can_two_connectors m
/ 5

processor ecu_can_one_connector extends ecu bus can,
features - - - %-,t_les T T
- . Latency == Ms .. Ms;
end ;zﬁkizn’C:zq:z:ﬁ;ﬁfzf.access cani SEI::BandWidthCapacity => SBEEEE.2 bitsps;
— — — — Transmissicn_Time =»> [Fixed => 18 ms .. 38ms;
PerByte => 1 us .. 18 us;];
LT \

Processor extension, specify bus connections Timing information
Share properties of inherited component (latency analysis)

Speed Regulation Case-Study

© 2014 Carnegie Mellon University

=== Software Engineering Institute | Carnegic Mellon University ~ Julien belange

Model Organization — software (1) | AADL Process |

/adur_ac:qui sil.iu-/ kpccd_cunlﬂ:llc/ %pc l:d_cstimat/ ﬁhshnlﬂ_d:’lﬂcﬁun /magc_acqui si'lju/
T
i
i

ﬁuar_a:quisltlcn/ speed I'.t}l‘llr't)ll&r/ /peeu estlma:e/ %ﬂ:slacle detectlonA /‘I‘\BDE _acouisiti DI'I

e - —-—————-————-—'- fo—mm—m————————m e —————————————— -y ———-———-—-———-———-—?

] 7 ¥ : .n

r" rndur_ur.nuisition_lhr,r J Jpeed_Ngntroller 1:h |:H:-|:d estimate_thr, -nhz.t.ur.ll: _detection_thr “fimage_acquisition th;

¥ ¥ ¢ l‘ § ‘

r________z______: F . L_______E______-f P | ________E_______."
————— e —— N ememe——— e e e e e e e)) e g
i 7 i

’fradar_acqul sition_thr.iy ;‘:peecl_e Btlmate_thr.!rlf ,JI mage_acquis mnn_tnr.?‘

I — LA ¥ ’ - ¥

AADL Thread

One software function = 1 AADL process + 1 AADL thread

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University =~ Julien Delange

© 2014 Carnegie Mellon University

riicdisdistance;

= —
use behavior speed_regulation::error_library::simple;

error propagations

cbstacle_distance : in propagation {MNoValue,Invalidvalue};

cbstacle_detected : out propagation {NoValue,Invalidvalue};

processor : in propagation {SoftwareFailure, HardwareFailure};
flows

end propagations;

component error behavior
transitions
t@ : Operaticnal -[processor{ScftwarefFailure}]-> Failed;
tl : Operaticnal -[processor{HardwareFailure}]-> Failed;
t2 : Failed -[processor{NoError}]-> Operaticnalj;
propagations
pl : Failed -[]-> cbstacle_detected{NoValue};

T
h

ef@ : error path cbstacle_distance{NoValue} -»> cbstacle_detected{NoValue};

efl : error path cbstacle_distance{Novalue} -> cbstacle_detected{Invalidvalue};

ef3 : error path cbstacle_distance{Invalidvalue} -> cbstacle_detected{Invalidvalue};

ef2 : error path processor{HardwareFailure,ScftwareFailure} -> cbstacle_detected{NoWValue};

end component; - Component type

Communication interfaces |

-~ Data flow specification
(latency analysis)

Erroy specification
afety analyses)

end Fadar_scqUIsTCIon,

Model Organization — software — textual notation (1)

| Tl

= imnlementation radar aconi=sition.

SUhCEEE??E:Efead radar_acquisition_thr.jl; Component |mp|ementat|on
SchomponentS Connsgtlozzrt cbhstacle_distance -»> thyg.cbstacle_distance;
and Connectlons D-,._.:l port thr‘.nbﬂtﬁe detected chstacle detected:

end radar_acquisition.i;

=== Software Engineering Institute

. . . Speed Regulation Case-Study
‘ Carnegie Mellon University ~ Julien Delange

© 2014 Carnegie Mellon University

34

Model Organization — software — textual notation (2)

Data flow
thread radar_acquisition_thr (I atency an alysis)

features
cbstacle distance :

in data port speed_regulaticn: 1cd rdistance;
- ign:: i bool

i flow path ocbstacle distance -> obstacle detected;
properties
Dispatch_Protocol => Perilodic;
Period

Time information
(latency analysis)

En

Resource Budgets
(resource allocation analysis)

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University =~ Julien Delange

© 2014 Carnegie Mellon University

35

Model Organization — safety specification

I Error types that could be raised I

package speed regulation::error_library
public
annex EMy2 {**
Error Types
MNoPower : twvpe;
WalueEr
Novalus alueError;
Invalid EI’I’OI’ StateS =
Hardwan
softwar I L=
end types;
error behawvior simple
states
Operational : initial statej;
Failed : state;

end spee

[
m
=
a

Component-specific error transitions
(to be added on a component-basis)

to be attached to components

v 1

oftware Engineering Institute ‘ Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange 36
© 2014 Carnegie Mellon University

Model Organization — define error flows — error source

dewvice camera
features

picture : owt data port speed regulaticn::icd::picture;
flows
fe : flow source picture;

properties

Period => 28@ms: .
e Eings e | Reuse predefined types |
ez speed regulaticon::error library;

p—————p— Define error types propagated
picture : out propagation {NoWValuej}; on Component interfaces
----- ;fE : EBrror source picture{ﬂnvalue};l

ropagations;

Define the error sources,
]
end camera; what interfaces initiates an error flow

]
Component camera >

! NoValue error propagated

— Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University =~ Julien Delange 37

© 2014 Carnegie Mellon University

Model Organization — define error flows — error path

annex EMy2 {*= | Reuse predefined types and behavior |
use types speed regulation::error lib S
I use behavior speed regulaticon::error librarv::isimple; I

ercor nronasations DEfINE €rror types propagated on component interfaces

ehstacle distance : in propagation {MNoWalue,InvalidValue};
Dhstacle detected : out plepagatlen {HeUalue,InualldValue},

ef@ : error path cobstacle_distance{NoValue} -» ocbstacle_detected{NcValue};
efl : error path cbstacle_distance{NoValue} -» obstacle_detected{InvalidvValue};

ef3 : error path cbstacle distance{Inwvalidvalue} -* cbstacle detected{InvalidvWalue};
ef2 : error path processor{HardwareFailure,

: . ¥i
_end propasations; | Define the propagations flows L
o]';‘ - - - o - |
obstacle_distance / NoValue —» obstacle_detected / NoValue
obstacle _distance / InvalidValue |
|
Processor/ SoItwareError obstacle detected / InvalidValue
Processor / HardwareError
| Component

X . . . Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange 38

© 2014 Carnegie Mellon University

Model Organization — error sink & define component error behavior

device warning_device
features

warning : in data port speed_regulation::icd::booclean;
flows
fe @ flow sink warning: | Jse predefined error types
properties
_ Pericd > sooms; and component behavior
use types speed_regulation::error_library; .
use behawvior speed_regulation::error_library::simplej; Operat|0na|
error propagations %
warning : in propagation {MNovalue,Inwvalidvaluel};
flows Rese NoValue
etf@ : error sink warning{Novalue,Invalidvalue}; InvalidValue

end propagations;

Define component-specific
error events

Reset : recover ewvent; |
transitions

t@ : Operaticnal -[warning{Movalue}]-» Failed;

tl : Operaticnal -[warning{Invalidvalue}]->» Failed;

t2 : Failed -[Reset]-» Operational;j

C Failed D

end component; CompOnent-SpeleIC
Ené"ﬁar‘ning_deuice; error tranSItlonS
= Speed Regulation Case-Study
—=— Software Engineering Institute | Carnegie Mellon University =~ Julien Delange 39

© 2014 Carnegie Mellon University

Model Organization — architecture alternatives

Common type for all
architecture alternative

Capture common
components characteristics

System implementation with
all common components

rd 1 L
F 1 LY
r : LY

Capture architecture
alternatives variability
8 (processors, buses, etc.)

My

(integration.implementationi] (integration.implementation2]

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange 40

© 2014 Carnegie Mellon University

Architecture Alternative 1: model instance

integration_implementation1_Instance

image_acquisition

emergency_detection warning_activation

obstacle_camera

warning_alert

picture
emergency_detected

obstacle detection obstacle_distance_evaluation

warning

obstacle_detected
obstacle_distance

picture

camera

activate_warning

obstacle_detected

emergency_detected

obstacle_radar radar_acquisition

obstacle_detected

obstacle_distance

nhstacle_distance
| current_speed

radar

distance_estimate

current_speed

ohstacleideté{cted

wheel_sensor

te

wheel_sensor

speed estim

speed i
speed_controller !/

speed,

laser _sensor old_calculation

laser_sensor current_speed f 3 |
speed current_speed i cm]
emergency_defected
quot position threshold p—— threshold
iti acceleration
position?
pasition My position -‘I
gps2 position2 osition i
position - -"”" o _l___,__.,-—{

A
‘ | > can_socket

can_socket € |
-

. . _ . . . Speed Regulation Case-Study
Software Engineering Institute | Carnegie Mellon University =~ Julien Delange

© 2014 Carnegie Mellon University

41

Architecture Alternative 2: model instance

integration_implementation2 Instance

radar_acquisition

obstacle_radar
obstacle detection
emergency_detection warning_activation

obstacle_distance
obstacle_detected 4
£ emergeﬁéy_deiecled

obstacle_distance_evaluation

distance_estimate

image _acduisition

nbstal:_}{eidistance

emergg{ncy_deiecled

S
A activate_warning

obstacle_camera
ohstacle_detkcted

picture i

warning_alert
\!\N warning

nbstacl\b;_distanr:e

etected

picture obstacle_d

curgent_speed

current_speed

wheel _sensor

speed_estimate
speed wheel_senso
laser_sensor laser_sensor speed speéd conlroller
speed threshold calculation v L-'i
speed T em_grgen‘cy detec}éd
o=t i currerﬂ _spe d
position_vofer; i current_speed P
- + -] Vi
pasition position Vi position cmd
acceleration
sition
gps2 position2 3 threshold
position

can_socket \

_— - can1

echi1
/ can_socket2 \

can_socket!

can_socket

L .

<~ T T, Variability Factors with Alternative 1

-_—

— . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University =~ Julien Delange
T © 2014 Carnegie Mellon University

Agenda

Architecture Analysis

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

43

Latency Analysis, principles

1 _lnstance

o= Thstacle_CameTm

icturn JN

g
radar
B -

cla_detactad

» :
;

obstacke_radar

distance_sstimate !
WRBRI_RARRGY

—_—

lanar_sansor

gps? -

o
I position J’

| 3 curren_speed
spead Py current_speed i:l
— emergency_defected

e - position threshold !
[position] w7 I emd 4
- S # / i
II pasition — = |
position2 i 1

SLsEC_fEnar

warning
Percy_detacted |
b, ¢

S activate_warning T

ralyg /

‘o 3 "

obspacle_degted ~ 5, arming_alert
! 9 1 Yipning

whesl_sensor

laser_sensor

= =~ Potential impact
on latency

| F
speed '/

brake

cument_speed

Bus characteristics

position

position]

Alternativel

Alternative2

position2 “‘P“"

Acquisition Time

10 to 30 ms

200 to 500 ms

> can_socker]

> can_socketz Transmission Time (/B) 1to 10us

2to5ms

=== Software Engineering Institute | Carnegie Mellon University

Speed Regulation Case-Study

Julien Delange

© 2014 Carnegie Mellon University

44

atency Analysis, results

flow model element name deadline or conn delay total expected

f0: End to End Latency report

fo (Synchronous) device obstacle_camera:fo 200.0 ms 200.0 ms 900.0 ms

fo (Synchronous) Connection obstacle_camera.pictur 0.0 us 200.0 ms 900.0 ms

fo (Synchronous) thread image_acquisition.thr:f 50.0 ms 250.0 ms 900.0 ms

fo (Synchronous) Connection image_acquisition.thr.c 0.0 us 250.0 ms 900.0 ms

fo (Synchronous) thread obstacle_dete n.thr: 100.0 ms 350.0 ms 900.0 ms

= fo (Synchronous) Connection obstacle_detection.thr. 30.00125 ms 380.00125 ms 900.0 ms

A r C h I teCt u r e fo (Synchronous) thread obstacle_distance_ewval 10.0 ms 390.00125 ms 900.0 ms
fo (Synchronous) Connection obstacle_distance_ewval 0.0 us 380.00125 ms 900.0 ms

- fo (Synchronous) thread emergency_dete n.t4.0 ms 394.00125 ms 900.0 ms

A | t t 1 fO (Synchronous) Connection emergency_detection.t0.0 us 394.00125 ms 900.0 ms
e r n a I V e fo (Synchronous) thread warning_activation.thr: 2.0 ms 396.00125 ms 900.0 ms

fo (Synchronous) Connection warning_activation.thr. 0.0 us 396.00125 ms 900.0 ms

fo (Synchronous) device warning_alert:f0 500.0 ms 886.00125 mis 900.0 ms

fo (Synchronous) Total 0.0 us 896.00125 ms 900.0 ms

Ifl:l: End-to-end flow fO calculated latency (Synchronous) 896.00125 ms is less than expected latency 900.0 ms I

flow model elemername deadline or conr total expected

f0: End to End Latency report

fO {Synchronous) device obstacle_camera:fo 200.0 ms 200.0 ms 900.0 ms

fo {Synchronous) Connection obstacle_camera.picture - 0.0 us 200.0 ms 900.0 ms

]FD {Synchronous) thread image_acquisition.thr:f0 50.0 ms 250.0 ms 300.0 ms

fo {Synchronous) Connection image_acquisition.thr.ob: 0.0 us 250.0 ms 900.0 ms

fO {Synchronous) thread obstacle_detection.thr:f0 100.0 ms 350.0 ms 900.0 ms

: fo {Synchronous) Connection obstacle_detection.thr.ok 100.00625 ms 450.00625 ms 900.0 ms

A r C I t eC t u r e fo {Synchronous) thread obstacle_distance_evalua 10.0 ms 460.00625 ms 900.0 ms
fo {Synchronous) Connection obstacle_distance_evalua 0.0 us 460.00625 ms 900.0 ms

. 0 (Synchronous) thread emergency_detection.thr 4.0 ms 464.00625 ms 900.0 ms

A | te r n at I Ve 2 fo {Synchronous) Connection emergency_detection.thr 0.0 us 464.00625 ms 900.0 ms
fo {Synchronous) thread warning_activation.thr:fo 2.0 ms 466.00625 ms 900.0 ms

fo {Synchronous) Connection warning_activation.thr.ac 0.0 us 466.00625 ms 900.0 ms

fO {Synchronous) device warning_alert:fO 500.0 ms 966.00625 ms 900.0 ms

fo {Synchronous) Total 0.0 us 966.00625 ms 900.0 ms

IERROR: f0: End-to-end flow f0 calculated latency (Synchronous) 966.00625 ms exceeds expected latency 900.0 msl

— Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University =~ Julien Delange

© 2014 Carnegie Mellon University

Resources Allocation Analysis, principles

1 _Instance

obslacle camera

pietura

>

sicture B

wbstacke_radar

distance_estimate It—>]

wheel_sensor

laser_sensor

abstacle_detected

=

speed current_speed

¥

s position

P position] AN

position

!

obstacle_detected
obstacke_gistance

curment_spoed

wearning

sbstacle_distance

emergency_detected

current_speed

curran_spead i

smergency_defacted
threshold 4 - "

position

amargency_detactad

Activate_warming

ARG

acceleration

crnd

"

nstance

obstacle_radar

obstacke_cam:

camgra
obspacle_detected
/

curment_speed

position] posilion

» position2 —

|

e geu?
can_sockel

currant_spas

threshold

i ermargEney_detectad
obstacly_distance Fd
curgbni_specd

ey detecibd
wed

ean_socke €4

§ > can_socket2

¥ > can_socket]
e ———

warning
emergeRcy_detectad
obstacle_distance
. _activate_warning I

brake

;% Software Engineering Institute | Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

46

Resources Allocation Analysis, results

Architecture
Alternative 1

Architecture
Alternative 2

-

Resource Budget Statistics

Processor Report
= Total MIPS 56.000 MIPS of bound tasks exceeds MIPS capacity 50.000 MIPS of ecul
Total MIPS 25.000 MIPS of bound tasks within MIPS capacity 50.000 PMIPS of ecud

Virtual Frocessor Eeport

FRAM/ROM Report

- .y
= Resource Budget Statistics lﬁ

Processor Report
Total MIPS 45.000 MIPS of bound tasks within MIPS capacity 50.000 PMIPS of ecul
Teotal MIPS 8,000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu2

Teotal MIPS 25.000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu3

Virtual Processor Report

RAM/ROM Report

Speed Regulation Case-Study

=== Software Engineering Institute | Carnegie Mellon University ~ Juiien Defange

© 2014 Carnegie Mellon University

47

Safety Analyses Overview

Functional Hazard Analysis (FHA)

Failures inventory with description, classification, etc.
Fault-Tree Analysis (FTA)

Dependencies between errors event and failure modes
Fault-Impact Analysis

Error propagations from an error source to impacted component
Need to combine analyses

Connect results to see impact on critical components

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange 48

© 2014 Carnegie Mellon University

Safety Analysis, FHA, results
Architecture Alternative 1: 15 errors contributors %

Architecture Alternative 2: 17 errors contributors @

Difference stems from additional platform components (ecu)
Have to consider criticality of fault impacts

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

49

Safety Analysis, FTA results
Architecture Alternative 1: 15 errors contributors %

Architecture Alternative 2: 17 errors contributors @

Difference stems from additional platform components (ecu)
Have to consider criticality of fault impacts

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

50

Safety Analysis, Fault Impact, results
Architecture Alternative 1 & 2: 443 error paths

Use the same paths
The additional ECU in alternative 2 covers path from ecu2
in Alternative 1

Impact on components criticality

Defect on the additional bus in Architecture 2 impact low-critical
functions

|solate defect from low-critical functions to affect high-critical

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange 51

© 2014 Carnegie Mellon University

Analysis Summary

Architecture 1 Architecture 2

Latency

Resources Budgets

Safety

Cost

O XX ©
XOOX

What is the “best” architecture?

Speed Regulation Case-Study
Software Engineering Institute ‘ Carnegie Mellon University =~ Julien Delange

© 2014 Carnegie Mellon University

52

Agenda

Conclusion

=== Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

53

Conclusions

Safety-Critical Systems Development issues is not a fatality
Late detection of errors is no longer possible
Need for new methods and tools
AADL supports Architecture Study and Reasoning
Evaluate quality among several architectures
Ease decision making between different architecture variations
Analysis of Architectural change on the whole system
User-friendly and open-source workbench
Graphical Notation
Interface with other Open-Source Tools

= Speed Regulation Case-Study
=== Software Engineering Institute ‘ Carnegie Mellon University ~ Julien Delange 54

© 2014 Carnegie Mellon University

Useful Resources

AADL wiki — http://www.aadl.info/wiki

Model-Based Engineering with AADL book

SEI blog post series http://blog.sei.cmu.edu

Mailing-List
see. https://wiki.sei.cmu.edu/aadl/index.php/Mailing List

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University Julien Delange

© 2014 Carnegie Mellon University

55

http://www.aadl.info/wiki
http://blog.sei.cmu.edu
https://wiki.sei.cmu.edu/aadl/index.php/Mailing_List

Questions & Contact

Dr. Julien Delange

Member of the Technical Staff
Architecture Practice
Telephone: +1 412-268-9652
Email: info@sei.cmu.edu

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

U.S. Mail

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu

Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

=== Software Engineering Institute | Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange 56
© 2014 Carnegie Mellon University

mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/contact.cfm

	Architecture Analysis with AADL�The Speed Regulation Case-Study
	Slide Number 2
	What this talk is about?
	Agenda
	Agenda
	Polling Question 1
	Safety-Critical Systems are Intensively Software-Reliant
	Errors are introduced early but detected (too) lately
	Many Errors stems from Architecture or Integration Issues
	Why Model-Based Engineering Matters?
	Polling Question 2
	Architecture Analysis Design Language
	AADL Model Example
	Architecture Analysis Design Language
	Agenda
	Objectives of this Study
	Case-Study Description
	Polling Question 3
	Case-Study Objectives
	Agenda
	Functional Architecture
	Functional Architecture, timing perspective
	Functional Architecture, criticality perspective
	Deployment Alternatives
	Architecture Alternative 1
	Architecture Alternative 2
	Agenda
	Modeling Guidelines
	Model Organization – devices
	Model Organization – devices – textual model
	Model Organization – Interfaces Specifications
	Model Organization – platform
	Model Organization – software (1)
	Model Organization – software – textual notation (1)
	Model Organization – software – textual notation (2)
	Model Organization – safety specification
	Model Organization – define error flows – error source
	Model Organization – define error flows – error path
	Model Organization – error sink & define component error behavior
	Model Organization – architecture alternatives
	Architecture Alternative 1: model instance
	Architecture Alternative 2: model instance
	Agenda
	Latency Analysis, principles
	Latency Analysis, results
	Resources Allocation Analysis, principles
	Resources Allocation Analysis, results
	Safety Analyses Overview
	Safety Analysis, FHA, results
	Safety Analysis, FTA results
	Safety Analysis, Fault Impact, results
	Analysis Summary
	Agenda
	Conclusions
	Useful Resources
	Questions & Contact

